विद्युत जनित्र में कौन सी ऊर्जा का रूपांतरण होता है? - vidyut janitr mein kaun see oorja ka roopaantaran hota hai?

किसी संकाय (सिस्टम) की कार्य करने की क्षमता को उर्जा कहते हैं। किसी संकाय पर काम करके या उसके द्वारा काम कराकर ही उसकी उर्जा को बदला जा सकता है क्योंकि उर्जा वह राशि है जो संरक्षित (कंजर्व्ड) होती है।

उर्जा तरह-तरह के रूपों में पायी जाती है और भिन्न-भिन्न प्रकार की उर्जा का परस्पर परिवर्तन किया जा सकता है। किसी प्रकार की उर्जा कहीं उपयोगी है तो किसी प्रकार की कहीं और। उदाहरण के लिये कोयले में संचित रासायनिक उर्जा को जलाकर उससे उष्मीय उर्जा प्राप्त की जा सकती है। इस उष्मा से पानी को उबालकर वाष्प बनाकर उससे वाष्प टरबाइन चलाकर इसे यांत्रिक उर्जा में बदला जा सकता है। इस टरबाइन से कोई विद्युत जनित्र चलाकर इस यांत्रिक उर्जा को विद्युत उर्जा में बदला जा सकता है। इस विद्युत उर्जा से प्रकाश बल्ब जलाकर प्रकाश उर्जा प्राप्त की जा सकती है।

मशीनों में ऊर्जा रूपान्तरण के उदाहरण[संपादित करें]

उदाहरण के लिये, कोयला पर आधारित ऊर्जा संयंत्र में निम्नलिखित प्रकार के ऊर्जा रूपान्तरण होते हैं-

  1. कोयले की रासायनिक ऊर्जा, निर्वातक गैसों की ऊष्मीय ऊर्जा में बदल जाती है।
  2. निर्वातक गैसों की ऊष्मीय ऊर्जा, हीट एक्सचेनजर में भाप की ऊष्मीय ऊर्जा में बदलती है।
  3. भाप की ऊष्मीय ऊर्जा, टरबाइन में जाकर यांत्रिक ऊर्जा में बदल जाती है।
  4. Mechanical energy of the turbine converted to electrical energy by the generator, which is the ultimate output

In such a system, the first and fourth step are highly efficient, but the second and third steps are less efficient. The most efficient gas-fired electrical power stations can achieve 50% conversion efficiency. Oil- and coal-fired stations achieve less.

In a conventional automobile, these energy transformations are involved:

  1. Chemical energy in the fuel converted to kinetic energy of expanding gas via combustion
  2. Kinetic energy of expanding gas converted to linear piston movement
  3. Linear piston movement converted to rotary crankshaft movement
  4. Rotary crankshaft movement passed into transmission assembly
  5. Rotary movement passed out of transmission assembly
  6. Rotary movement passed through differential
  7. Rotary movement passed out of differential to drive wheels
  8. Rotary movement of drive wheels converted to linear motion of the vehicle.

अन्य प्रकार के ऊर्जा रूपान्तरण[संपादित करें]

There are many different machines and transducers that convert one energy form into another. A short list of examples follows:

[[ चित्र:Gorskii 04414u.jpg|thumb|right| बीसवीं शताब्दी के आरम्भिक दिनों का अल्टरनेटर, जो बुडापेस्ट में बना हुआ है।]]

विद्युत जनित्र (इलेक्ट्रिक जनरेटर) एक ऐसी युक्ति है जो यांत्रिक उर्जा को विद्युत उर्जा में बदलने के काम आती है। इसके लिये यह प्रायः माईकल फैराडे के विद्युतचुम्बकीय प्रेरण (Electromagnetic Induction) के सिद्धान्त का प्रयोग करती है। विद्युत मोटर, इसके विपरीत विद्युत उर्जा को यांत्रिक उर्जा में बदलने का कार्य करती है। विद्युत मोटर एवं विद्युत जनित्र में बहुत कुछ समान होता है और कई बार एक ही मशीन बिना किसी परिवर्तन के दोनो की तरह कार्य कर सकती है।

विद्युत जनित्र, विद्युत आवेश को एक वाह्य परिपथ से होकर प्रवाहित होने के लिये वाध्य करता है। लेकिन यह आवेश का सृजन नहीं करता। यह जल-पम्प की तरह है जो केवल जल-को प्रवाहित करने का कार्य करती है, जल पैदा नहीं करती।

विद्युत जनित्र द्वारा विद्युत उत्पादन के लिये आवश्यक है कि जनित्र के रोटर को किसी बाहरी शक्ति-स्रित की सहायता से घुमाया जाय। इसके लिये प्रत्यागामी इंजन (रेसिप्रोकेटिंग इंजन), टर्बाइन, वाष्प इंजन, किसी टर्बाइन या जल-चक्र (वाटर-ह्वील) पर गिरते हुए जल, किसी अन्तर्दहन इंजन, पवन टर्बाइन या आदमी या जानवर की शक्ति का प्रयोग किया जा सकता है।

किसी भी स्रोत से की गई यांत्रिक ऊर्जा को विद्युत् ऊर्जा में परिवर्तित करना संभव है। यह ऊर्जा, जलप्रपात के गिरते हुए पानी से अथवा कोयला जलाकर उत्पन्न की गई ऊष्मा द्वारा भाप से, या किसी पेट्रोल अथवा डीज़ल इंजन से प्राप्त की जा सकती है। ऊर्जा के नए नए स्रोत उपयोग में लाए जा रहे हैं। मुख्यत:, पिछले कुछ वर्षों में परमाणुशक्ति का प्रयोग भी विद्युतशक्ति के लिए बड़े पैमाने पर किया गया है और बहुत से देशों में परमाणुशक्ति द्वारा संचालित बिजलीघर बनाए गए हैं। ज्वार भाटों एवं ज्वालामुखियों में निहित असीम ऊर्जा का उपयोग भी विद्युत्शक्ति के जनन के लिए किया गया है। विद्युत उत्पादन के लिए इन सब शक्ति साधनों का उपयोग, विशालकाय विद्युत् जनित्रों द्वारा ही हाता है, जो मूलत: फैराडे के 'चुंबकीय क्षेत्र में घूमते हुए चालक पर वेल्टता प्रेरण सिद्धांत पर आधारित है।

एक फेज वाले एक सरल जनित्र की कार्यविधि

विद्युत जनित्र का कार्य, फैराडे के विद्युतचुम्बकीय प्रेरण के नियम पर आधारित है। यह सिद्धान्त निम्नलिखित रूप में व्यक्त किया जा सकता है :

यदि कोई चालक किसी चुंबकीय क्षेत्र में घुमाया जाए, तो उसमें एक वि.वा.ब. (विद्युत् वाहक बल) की उत्पत्ति होती है; और यदि संवाहक का परिपथ पूर्ण हो तो उसमें धारा का प्रवाह भी होने लगता है।

इस प्रकार विद्युत् शक्ति के जनन के लिए तीन मुख्य बातों की आवश्यकता है :

  • (१) चुंबकीय क्षेत्र, जिसमें चालक घुमाया जाए,
  • (३) चालक को चुंबकीय क्षेत्र में घुमानेवाली यांत्रिक शक्ति

यह भी स्पष्ट है कि विद्युत्शक्ति का उत्पादन व्यावहारिक बनाने के लिए चालक में प्रेरित विद्युतवाहक बल की मात्रा पर्याप्त होनी चाहिए। इसकी मात्रा, चालक की लंबाई, चुंबकीय क्षेत्र की तीव्रता (जिसे अभिवाह घनत्व के रूप में मापा जाता है) और चालक के वेग पर निर्भर करती है। वास्तव में इसे निम्नलिखित समीकरण से व्यक्त किया जा सकता है :

E = B l v

जहाँ,

E = विद्युतवाहक बल (emf),B =चुंबकीय अभिवाह (flux) का घनत्व,l =चालक की लंबाईv =चालक का वेग (क्षेत्र के लंबवत्)

विद्युत जनित्र में कौन सी ऊर्जा का रूपांतरण होता है? - vidyut janitr mein kaun see oorja ka roopaantaran hota hai?

एकल फेजी तुल्यकालिक जनित्र (या, अल्टरनेटर) ; इसमें रोटर पर फिल्ड वाइण्डिंग है जिसकी सहायता से चुम्बकीय फिल्ड पैदा होता है तथा स्टेटर पर आर्मेचर वाइण्डिंग है जिसमें वोल्टेज पैदा होता है। इसी वाइण्डिंग को लोड (जैसे, बल्ब) से जोड़ा जाता है।

इससे यह स्पष्ट हो जाता है कि व्यावहारिक रूप में चालक की लंबाई एवं वेग दोनों ही बहुत अधिक होने चाहिए और साथ ही चुंबकीय अभिवाह घनत्व भी अधिकतम हो। चुंबकीय क्षेत्र भी अधिकतम हो। चुंबकीय क्षेत्र की अधिकतम सीमा उसके संतृप्त होने के कारण निर्धारित होती है। चालक की लंबाई बढ़ाना भी व्यावहारिक रूप से संभव नहीं, परंतु एक से अधिक चालक को इस प्रकार समायोजित किया जा सकता है कि उनमें प्रेरित वि.वा.ब. जुड़कर व्यावहारिक बन जाए। वस्तुत: जनित्र में एक चालक के स्थान पर चालक का एक तंत्र होता है, जो एक दूसरे से एक निर्धारित योजना के अनुसार संयोजित होते हैं। इन चालकों को धारण करनेवाला भाग आर्मेचर (Armature) कहलाता है और इनकी संयोजन विधि को आर्मेचर कुंडलन (Armature Winding) कहते हैं।

वेग अधिक होने से, घूमनेवाले चालकों पर अपकेंद्र बल (centrifugal force) बहुत अधिक हो जाता है, जिसके कारण आर्मेचर पर उनकी व्यवस्था भंग हो सकती है। अत: इन्हें आर्मेचर पर बने खाँचों (slots) में रखा जाता है। आर्मेचर चालकों को धारण करने के साथ ही उनको घुमाता भी है, जिसके लिए उसका शाफ्ट (shaft) यांत्रिक ऊर्जा का संभरण करनेवाले यंत्र के शाफ्ट से युग्मित (coupled) होता है। यह यंत्र पानी से चलनेवाला टरबाइन, या भाप से चलनेवाला टरबाइन या इंजन, हो सकता है। किसी भी रूप में उपलब्ध यांत्रिक ऊर्जा को आर्मेचर का शाफ्ट घुमाने के लिए प्रयोग किया जा सकता है। इस प्रकार विभिन्न प्रकार के यंत्र जनित्र को चलाने के लिए प्रयुक्त किए जाते हैं। इन्हें प्रधान चालक (Prime Mover) कहते हैं। विभिन्न प्रकार के इंजन, जैसे वाष्प इंजन, डीजल इंजन, पेट्रोल इंजन, गैस टरबाइन इत्यादि मशीनें, प्रधान चालक के रूप में प्रयुक्त की जाती हैं और इनकी यांत्रिक ऊर्जा को जनित्र द्वारा विद्युत् ऊर्जा में परिवर्तित किया जाता है।

दिष्टधारा जनित्र (डीसी जनरेटर)[संपादित करें]

दिक्परिवर्तक (क्कॉम्युटेटर) के उपयोग से प्राप्त डीसी वोल्टेज। ध्यान दें कि यह वोल्टेज 'पूर्ण डीसी' नहीं होता बल्कि शून्य से लेकर अधिकतम तक घटता-बढ़ता (पल्सेटिंग) होता है।

यदि दिक्परिवर्तक के स्थान पर 'स्लिप-रिंग' का उपयोग किया जाय तो हमें प्रत्यावर्ती धारा (ए.सी. ; डी.सी. नहीं) प्राप्त होती है।

डीसी मशीन भी देखें।

आर्मेचर चुंबकीय पदार्थ का बना होता है, जिससे चुंबकीय क्षेत्र अभिवाह का वाहक हो सके। सामान्यत: यह एक विशेष प्रकार के इस्पात का बना होता है, जिसे आर्मेचर इस्पात ही कहते हैं।

चुंबकीय क्षेत्र उत्पन्न करने के लिए भी विद्युत् का ही प्रयोग व्यावहारिक रूप में किया जाता है, क्योंकि इससे स्थायी चुंबक की अपेक्षा कहीं अधिक तीव्रता का चुंबकीय क्षेत्र उत्पन्न किया जा सकता है और क्षेत्रधारा का विचरण कर सुगमता से क्षेत्र का विचरण किया जा सकता है। इस प्रकार जनित वोल्टता का नियंत्रण सरलता से किया जा सकता है। चुंबकीय क्षेत्र उत्पन्न करने के लिए क्षेत्र चुंबक (field magnets) होते हैं, जिनपर क्षेत्रकुंडली वर्तित होती है। इन कुंडलियों में धारा के प्रवाह से चुंबकीय क्षेत्र की उत्पत्ति होती है। एकसम क्षेत्र के लिए क्षेत्र चुंबकों का आकार कुछ गोलाई लिए होता है और उनके बीच में आर्मेचर घूमता है। आर्मेचर तथा क्षेत्र चुंबकों के बीच वायु अंतराल (air gap) न्यूनतम होना चाहिए, जिससे क्षेत्रीय अभिवाह का अधिकांश आर्मेचर चालकों को काट सके और आर्मेचर में जनित वोल्टता अधिकतम हो सके।

क्षेत्र कुंडली में धारा प्रवाह को उत्तेजन (Excitation) कहते हैं। यह उत्तेजन किसी बाहरी स्रोत (बैटरी अथवा विद्युत् के उस जनित्र के अलावा कोई दूसरे स्रोत) से संयोजित करने पर किया जा सकता है अथवा स्वयं उसी जनित्र में उत्पन्न होनेवाली धारा का ही एक अंश उत्तेजन के लिए भी प्रयुक्त किया जा सकता है। बाहरी स्रोत से उत्तेजित किए जानेवाले जनित्र को बाह्य उत्तेजित जनित्र (separately exited generator) कहा जाता है और स्वयं उसी जनित्र में जनित धारा का भाग उपयोग करनेवाले जनित्र को स्वतःउत्तेजित जनित्र (Self-excited Generator) कहा जाता है। स्वतः उत्तेजन की प्रणालियाँ भी क्षेत्र कुंडली और आर्मेचर के सयोजनों के अनुसार भिन्न भिन्न होती हैं। यदि क्षेत्र कुंडली आर्मेचर से श्रेणीक्रम (series) में संयोजित हों, तो उसे श्रेणी जनित्र (Series Generator) कहा जाता है। यदि दोनों में पार्श्व संबंधन (parallel connection) हो, तो उसे शंट जनित्र (Shunt Generator) कहते हैं। यदि क्षेत्र कुंडली के कुछ वर्त (टर्न) आर्मेचर से श्रेणी में और कुछ उससे पार्श्व संबंधित हों, तो ऐसे जनित्र को संयुक्त जनित्र (Compound Generator) कहते हैं। उत्तेजन की इन विभिन्न विधियों से विभिन्न लक्षण प्राप्त होते हैं। बाह्य उत्तेजित जनित्र में क्षेत्रधारा आर्मेचर धारा अथवा भारधारा पर निर्भर नहीं करती। अतः उसमें जनित वोल्टता, भार (load) विचरण से प्रभावित नहीं होती है। यदि क्षेत्रधारा को एक समान रखा जाए और जनित्र में जनित वोल्टता भी एक समान रहेगी। शंट जनित्र में भी लगभग ऐसा ही लक्षण (characteristics) प्राप्त होता है और भार-विचरण का प्रभाव जनित वोल्टता पर अधिक नहीं होता। श्रेणी जनित्र में, भारधारा ही आर्मेचर और क्षेत्र कुंडलियों में प्रवाहित होती है। अत:, यह क्षेत्रधारा भार पर निर्भर करती है और इस प्रकार जनित वोल्टता भार बढ़ने के साथ बढ़ती जाती है।

संयुक्त जनित्र में शंट एवं श्रेणी जनित्रों के बीच के लक्षण होते हैं। क्षेत्र कुंडली के शंट और श्रेणी वर्तों का व्यवस्थापन कर उनके बीच का कोई भी लक्षण प्राप्त किया जा सकता है। व्यवहार में संयुक्त जनित्रों का ही अधिक प्रयोग होता है।

चुंबकीय क्षेत्र में एकसमान वेग से घूमनेवाले चालक में जनित वोल्टता, चालक के चुंबकीय अभिवाह (fux) को काटने की गति पर निर्भर करती है। यह गति, वस्तुतः, किसी क्षण भी चालक के चुंबकीय अभिवाह के सापेक्ष स्थित पर निर्भर करती है। जब चालक एकसमान वेग से घूम रहा हो, तो वह एक चक्कर में दो बार अभिवाह के लंबवत् होगा और इस स्थिति में वह अधिकतम अभिवाह काटेगा, तथा जब वह कोई भी अभिवाह नहीं काटेगा, दो बार उसके समान्तर होगा। इस प्रकार एक चक्कर में दो बार उसमें जनित वोल्टता शून्य और अधिकतम के बीच विचरण करेगी। इस प्रकार के विचरण को प्रत्यावर्ती विचरण कहते हैं। आर्मेचर चालकों में भी इसी प्रकार की प्रत्यावर्ती वोल्टता उत्पन्न होती है और उसे दिष्ट रूप देने के लिए दिक्परिवर्तक (commutator) का प्रयोग किया जाता है।

दिक्परिवर्तक आर्मेचर के शाफ्ट पर ही आरोपित होता है। उसमें बहुत से ताम्रखंड (copper segments) होते हैं, जो एक दूसरे से विद्युतरुद्ध (insulated) होते हैं। आर्मेचर के वर्तन के अंत्यसंयोजन (end connection) इन खंडों से संयोजित होते हैं। दिक्परिवर्तक से संस्पर्श करनेवाले दो बुरुश होते हैं, जो आर्मेचर में जनित वोल्टता द्वारा प्रवाहित होनेवाली धारा को बाहरी परिपथ से संयोजित करते हैं। आर्मेचर चालकों का दिक्परिवर्तक से संयोजन इस प्रकार किया जाता है कि दोनों बुरुशों द्वारा इकट्ठी की जानेवाली धारा एक ही दिशा की होती है। इस प्रकार एक बुरुश धनात्मक धारा इकट्ठी करता है और दूसरा ऋणात्मक। इस आधार पर बुरुशों को भी धनात्मक एवं ऋणात्मक कहा जाता है। वस्तुतः, बुरुश विद्युत्धारा के टर्मिनल हैं, जो भार को जनित्र से संबद्ध करते हैं। ये बुरुशधारक (brush holder) पर आरोपित होते हैं और दिक्पविर्तक पर इनकी स्थिति बुरुश धारक द्वारा व्यवस्थापित की जा सकती है।

विद्युत मोटर में कौन सी ऊर्जा का रूपांतरण होता है?

विद्युत मोटर (electric motor) एक विद्युतयांत्रिक मशीन है जो विद्युत ऊर्जा को यांत्रिक ऊर्जा में बदलती है; अर्थात इसे उपयुक्त विद्युत स्रोत से जोड़ने पर यह घूमने लगती है जिससे इससे जुड़ी मशीन या यन्त्र भी घूमने लगती है। अर्थात यह विद्युत जनित्र का उल्टा काम करती है जो यांत्रिक ऊर्जा लेकर विद्युत उर्जा पैदा करता है।

विद्युत जनित्र में रूपांतरण क्या होता है?

विद्युत जनरेटर में परिवर्तित ऊर्जा यांत्रिक ऊर्जा को विद्युत ऊर्जा में परिवर्तित करती है।

विद्युत जनित्र किसका स्रोत है?

विद्युत जनित्र (इलेक्ट्रिक जनरेटर) एक ऐसी युक्ति है जो यांत्रिक उर्जा को विद्युत उर्जा में बदलने के काम आती है। इसके लिये यह प्रायः माईकल फैराडे के विद्युतचुम्बकीय प्रेरण (Electromagnetic Induction) के सिद्धान्त का प्रयोग करती है। विद्युत मोटर, इसके विपरीत विद्युत उर्जा को यांत्रिक उर्जा में बदलने का कार्य करती है।

ऊर्जा का रूपांतरण कैसे होता है?

मशीनों में ऊर्जा रूपान्तरण के उदाहरण.
कोयले की रासायनिक ऊर्जा, निर्वातक गैसों की ऊष्मीय ऊर्जा में बदल जाती है।.
निर्वातक गैसों की ऊष्मीय ऊर्जा, हीट एक्सचेनजर में भाप की ऊष्मीय ऊर्जा में बदलती है।.
भाप की ऊष्मीय ऊर्जा, टरबाइन में जाकर यांत्रिक ऊर्जा में बदल जाती है।.